
Distributed Content Aggregation& Content
Change Detection using Bloom Filters

Sornalingam Nadaraj

Abstract - In this paper, we put forward a technique for
distributed aggregation of the web and content classification.
Over the decade, Internet has grown exponentially in size and
usage. Aggregation is way to collect the scattered information
across the internet and provide it under a single hood. This
paper puts forward an architecture built on Message queue
architecture for running crawlers in distributed environment
and classifying content. Enormous growth of websites
provides lot of duplicate information and often times it is
dynamic in nature. This paper describes an approach for
distributed aggregation and faster scalable content
classification and change detection. We have used a three-step
algorithm for refreshing page content. It checks whether the
content of a web page has been changed or not. Also it
provides a way to find which portion of a field has been
altered using Bloom filter.

Index Terms - Distributed Aggregation, Change detection,
Multi-threaded server, Structural and content changes, Bloom
Filter.

1 INTRODUCTION
1.1 Definition

During aggregation each site needs a separate crawler to
extract the necessary information. Since web pages are
different in nature we need to have separate crawler for
each site. Each crawler will have its own start seed URL
and template (JSON, XML). It starts with a seed URL and
then follows the links on each page in a Breadth First or a
Depth First method [1]. With ever increasing size of web,
multiple crawlers are required to run in parallel to browse
and download web pages. Companies in domains such as,
Health care, Stock market, Advertising, Talent Acquisition,
Search Engines etc., use their own in house crawling
technology to aggregate information from thousands and
thousands of websites.
The present work is divided into 4 sections as follows. In
current section we have discussed about the introduction of
crawlers and related work done. Section 2 discusses the
proposed architecture for the distributed aggregation. In
section 3 we discuss algorithms used for content
classification and detecting changes in web pages and
finally in section 4 we conclude our work along with future
directions.

1.2 Overview
Here, we propose new design architecture for building

distributed aggregation architecture. The main challenge
while making such a design is to maximize the
performance of the system, scalability and content
classification. To achieve efficient process we need to
tackle some common issues faced by the aggregation

processes. The most frequent challenges in distributed
aggregation system are –
1. Efficiency of the crawlers. They should not go into

infinite loops and aggregate duplicate content.
2. Due to the large content of the web pages there is a

possibility that we may crawl same content in different
web sites.

3. Dynamic nature of websites leads to frequent changes
in the content.

4. Aggregating new content, Detecting content changes
(updated content), Excluding duplicate content and
removing deleted content have become a big
challenge. We need to have an efficient system to
aggregate the reliable content from abundant pages
available online.

 Crawler Architecture: Previous publications
describe various architectures under which crawlers of
certain current search engines work. [3] Describes the
architecture of the crawling technique used by Google
whereas [4] studies the Compaq SRC crawler.
Although these papers describe the macro view of the
crawler architecture used by them, but little insight or
detail has been provided by them regarding the issues
related to parallel crawlers that have been discussed
above. [2] Describes a parallel crawler with multiple
architectures along with metrics for evaluation.

 Page Update policies: Each crawler needs to update the
pages on a periodic basis to improve the quality of the
content in its databases. [6] Discusses scheduling
algorithms for crawlers to index the web on a regular
basis. [5] Describes the various freshness metrics used
for gauging the freshness and quality of a local copy of
a web page.

 Queue Processing: Queue processing allow us to
achieve distributed processing, Horizontal and vertical
scalability. [8] Describes the queue processing
component using which we can build scalable and fault
tolerance system for crawling and content
classification.

 Content classification: Aggregated contents
need to be classified into different categories. [7]
Describes the fastest and memory efficient way to
filter the content using hash functions.

Aggregation of web content consumes significant amount
of resources such as network bandwidth and other
resources due to the fast access of pages. To maintain the
most updated content of a page we have to crawl the pages
repeatedly. Thus the crawling activities of a single search
engine can cause a daily load of about 60GB to the web [9].

Sornalingam Nadaraj / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 7 (2) , 2016, 745-748

www.ijcsit.com 745

This load will increase significantly in future as the web
will grow exponentially in the future.
Distributed and parallel crawling [10] was purposed to
increase the coverage and decrease the bandwidth usage,
but this does not help a lot. The distribution of the crawling
function was efficiently reducing the network bottleneck
from the search engine’s site and improves the quality of
the results, but these are not at all optimized.
Page change detection Algorithms: [11] Describes and
compares the different algorithms to detect the web page
content changes. It describes the content classification
using Tree and Hash based approach and their pros and
cons. One of the biggest problems is to identify which
portion of the page has been updated. In the aggregation
system it plays a major role to keep the content updated.

2 PROPOSED ARCHITECTURE
The proposed architecture consists of 2 different parts,

a. Consumer to run the spiders/crawlers in
parallel

b. Consumer to run the content change detection
 Consumer to run the spiders in parallel: There is a

queue which will hold the spider template and start
URL.

Figure 1: Publisher and Subscriber architecture to run the
spider in distributed workers. Queue: It consists of Spider

template and Start URL to crawl

The queue will be loaded with the messages (spider
template and start URL) by the scheduler on a periodic
basis. Whenever a message is available in the queue, the
consumer will consume the message and deserialize the
message. The consumer will run the crawler on the worker
machine using the template and seed the start URL. The
spider will crawl the content and directly load it into
another queue. This will ensure that the spider is not tightly
coupled with a machine. It will provide a way to decouple
spiders and run on different machines in a distributed
network. Each site will have a different pattern and we
cannot use a single spider template for all the sites. Adding
the spider template within the message will help the
consumer to use the template and run the spider.
It will ensure that the spiders are running on different
machines parallelly and aggregate the content. The task of
the spider is to aggregate the content and it does not care
about whether the data has reached its destination or not.

This way the functionality of a spider is restricted with the
aggregation process itself.

While aggregating the site we use bloom filter to find the
duplicate URL’s in the site, So that the spider will not go
into infinite loop. The spider will begin to aggregate the
page using the parent URL (start URL of a page). The
spider will look for the hyper link and make the new
request to the URL that are available on the page, Before
making new request, it will generate hash value for all the
URL's it is crawling and the generated hash key will be
loaded into Bloom filter.
It follows the BFS method to aggregate the contents
from various child pages.

Figure 2: Example web page crawling without bloom filter.

In the proposed logic for each request/URL it will check
whether the URL is already crawled or not by checking the
existence of URL in the bloom filter [Figure3]. If the URL
is already available in the bloom filter lookup then it will
skip the URL and move to next one on the page.

 Bloom with success (new URL)

 Bloom with un-Success (Existing URL)

Figure 3: Example web page crawling with bloom filter.

This way the spider makes sure that the duplicate
URL/Content will not be aggregated for the current
execution of the spider.

Aggregated contents will be loaded into a single queue in a
JSON format which will include the crawled source URL.

Sornalingam Nadaraj / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 7 (2) , 2016, 745-748

www.ijcsit.com 746

Each JSON represents extracted information of a single
page [Figure 4],

Figure 4: Crawler publishes the aggregated content to queue

in JSON format.

b. Consumer to run the content change detection :
From the above [Figure 4] queue consumer will receive
the aggregated JSON.

Figure 5: Consumer to find change detection and content

classification.

From the above [Figure 5] queue, the consumer will
receive the content and apply the following logic to classify
the contents,
1. Consume the content from queue
2. Create Hash key for URL from the JSON content
3. Check whether the hash is already available in bloom

filter file.
a. If it is already available then, Create hash key

for the crawled content.
b. Check whether the hash is already available in

the bloom lookup
i. If yes, then it is an existing content.

ii. If no, then content has been updated.
4. If not, Then add the URL hash value into the Bloom

lookup file1
5. Also Create hash key for the crawled content and insert

into Bloom filter lookup.

Figure 6: Content classification workflow

3 EXPERIMENTS

We used Python to build the spiders. Python tasks
were used for distributed message processing. Site URLs
were collected randomly.
Hardware details:

o Operating System: CentOS 7
o CPU: 2
o RAM: 2 GB

Example Aggregated JSON content:
{

'Asked' : ["today"],
'Description': ["favorite
Im using the following code to get the abbreviated(3 letters) time
zone in java7. But after updating to java8, all I get is offset of that
timezone rather than the abbreviation.Can anyone help?
static final ZONE_SHORT_FORMATTER =
DateTimeFormat.forPattern("zzz");
String timeZoneString = US/Arizona;
String loc= DateTimeZone.forID(timeZoneString);
// loc = America/Phoenix in this case
long time = DateTimeUtils.currentTimeMillis()
Sting timeZoneShort =
ZONE_SHORT_FORMATTER.withZone(loc).print(time);
Here,in timeZoneShort i get -07:00, which is the offset, rather
than getting MST."],
'View' : ["219times"],
'Title' : [U"TimeZone abbreviation not working after

updating to java 8
"],
'_template' :
"42073c2a2cd35c84bbabdaff56e72c03c90ef6a4",
'_type' : "default",
'url' :
"http://stackoverflow.com/questions/35145570/timezone-
abbreviation-not-working-after-updating-to-java-8"

}

Sornalingam Nadaraj / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 7 (2) , 2016, 745-748

www.ijcsit.com 747

Experiment 1: Content classification

S.No

Total no
of pages

to
aggregate

Total no
of

websites

Time
taken to

aggregate
the

content
(Min)

Bloom
filter

lookup
size

Time taken
to classify

the content
using bloom

filter
(Sec)

1 1,000 2 15 100,000 ~10
2 5,000 10 30 100,000 ~42
3 10,000 13 45 100,000 ~85
4 20,000 17 75 100,000 ~175
5 50,000 30 180 100,000 ~427

Experiment 2: Comparison between Bloom vs Lookup String
based content classification.

S.
No

Lookup Size
Input

content
count

Time taken to
classify input

using
traditional

string lookup
comparison

(Sec)

Time taken to
classify input
content using
Bloom lookup

(Sec)

1 1,000 1 0.001254 0.0003
2 5,000 1 0.003 0.0005
3 10,000 1 0.006 0.0008
4 20,000 1 0.2 0.001
5 50,000 1 0.35 0.002
6 100,000 1 0.7 0.008
7 1,000,000 1 1.29 0.03

4 CONCLUSION

The architecture that has been proposed in this paper has
the following distinct advantages:
 It follows message based consumer and producer for

processing aggregated content.
 New real time content aggregation can be achieved by

this methodology.
 The algorithm for content classification and change

detection is designed in such a way that it will even
find the small changes in the content and faster than
the traditional string lookup comparison.

 Ensures the Horizontal and Vertical scalability.
 Can dynamically attach and detach hardware resources

in a distributed environment to improve the processing
capacity

ACKNOWLEDGMENT
We acknowledge Mr. Vikas Aher for assistance with
Distributed crawling. Mr. Udayakumar Rajendran and Mr.
Jayanta Chowdhuri for advice and comments on the
manuscript and for support.

REFERENCES:
[1] David Eichmann, “The RBSE Spider – Balancing effective search

against web load”, Repository Based Software Engineering Program ,
Research Institute for Computing and Information Systems,
University of Houston – Clear Lake.

[2] Junghoo Cho & Hector Garcia-Molina, “Parallel Crawlers”.
Proceedings of the 11th international conference on World Wide Web
WWW '02, Honolulu, Hawaii, USA. ACM Press. Page(s): 124 – 135.

[3] Sergey Brin and Lawrence Page, “The Anatomy of a Large-Scale
Hypertextual Web Search Engine”,In Proceedings of the Seventh
World-Wide Web Conference, 1998.

[4] Heydon and M. Najork, “Mercator: A scalable, extensible web
crawler. Word Wide Web”, December 1999. Page(s):219–229

[5] Junghoo Cho and Hector Garcia-Molina, “Synchronizing a database
to improve freshness, submitted for publication”. Proceedings of the
2000 ACM SIGMOD international conference on Management of data.
Volume 29 Issue 2. Page(s): 117 – 128.

[6] E. Co.man, Jr., Z. Liu, and R. R. Weber, “Optimal robot scheduling
for web search engines”. Proceedings of the 11th international
conference on World Wide Web WWW '02 Honolulu, Hawaii, USA.
ACM Press. Page(s): 136 – 147.

[7] Ahmadi, M. ; Comput. Eng. Lab., Delft Univ. of Technol., Delft,
Netherlands ; Wong, S. “K-Stage Pipelined Bloom Filter for Packet
Classification”

[8] Sumit Dawar1, 2, Sven van der Meer1, Enda Fallon2, John Keeney1,
Tom Bennett “Building a Scalable Event Processing System with
Messaging and Policies –Test and Evaluation of RabbitMQ and
Drools Expert”

[9] J. Cho and Garcia-Molina, H. “The evolution of the web and
implications for an incremental crawler”. In proceedings of the
Twenty-sixth International Conference on Very Large Databases,
Cairo, Egypt, September 2000.

[10] Vikas, O. Chiluka, N.J. Ray, P.K. Girraj Meena Meshram, A.K. Gupta,
A. Sisodia, A., “WebMiner--Anatomy of Super Peer Based
Incremental Topic-Specific Web Crawler”. Networking, ICN '07.
Sixth International Conference on, pp.32-32, April 2007.

[11] Shobhna , Manoj Chaudhary “A Survey on Web Page Change
Detection System Using Different Approaches.”

Sornalingam Nadaraj / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 7 (2) , 2016, 745-748

www.ijcsit.com 748

